Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Anal Chem ; 96(13): 5205-5214, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38481140

RESUMEN

Pathogenic diseases that trigger food safety remain a noteworthy concern due to substantial public health, economic, and social burdens worldwide. It is vital for developing an integrated diagnosis and treatment strategy for bacteria, which could achieve quick detection of pathogenic bacteria and the inhibition of multidrug-resistant bacteria. Herein, we reported an organic molecule (M-3) possessed strong light capture capacity, emerging a low energy gap and ΔEST. Subsequently, M-3 was integrated into a nanostructured system (BTBNPs) with excellent ROS generation, light absorption capability, and photothermal performance. Reactive oxygen species (ROS) generated by BTBNPs were mainly free radicals from a type I mechanism, and the high photothermal conversion efficiency of BTBNPs was 41.26%. Benefiting from these advantages of BTBNPs, BTBNPs could achieve a ∼99% antibacterial effect for Escherichia coli O157:H7 with 20 µM dosage and 5 min of irradiation. Furthermore, the limit of detection (LoD) of the proposed BTBNPs-LFIA (colorimetric and photothermal modalities) for detecting E. coli O157:H7 was 4105 and 419 CFU mL-1, respectively. Overall, this work is expected to provide a new and sophisticated perspective for integrated diagnosis and treatment systems regarding pathogenic bacteria.


Asunto(s)
Escherichia coli O157 , Nanopartículas Multifuncionales , Microbiología de Alimentos , Especies Reactivas de Oxígeno , Límite de Detección
2.
J Dairy Sci ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490558

RESUMEN

Diarrheagenic Escherichia coli (DEC) is a kind of foodborne pathogen that poses a significant threat to both food safety and human health. To address the current challenges of high prevalence and difficult subtyping of DEC, this study developed a method that combined multiplex polymerase chain reaction (PCR) with high resolution melting (HRM) analysis for subtyping 5 kinds of DEC. The target genes are amplified by multiplex PCR in a single well, and HRM curve analysis was applied for distinct amplicons based on different melting temperature (Tm) values. The method enables discrimination of different DEC types based on characteristic peaks and distinct Tm values in the thermal melting curve. The assay exhibited 100% sensitivity and 100% specificity with a detection limit of 0.5-1 ng/µL. The results showed that different DNA concentrations did not influence the subtyping results, demonstrating this method owed high reliability and stability. In addition, the method was also used for the detection and subtyping of DEC in milk. This method streamlines operational procedures, shorts the detection time, and offers a novel tool for subtyping DEC.

3.
Foodborne Pathog Dis ; 21(5): 316-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354216

RESUMEN

In China, Salmonella is one of the most frequent causes of bacterial gastroenteritis, and food handlers in restaurants as an important contaminated source were rarely reported. In May 2023, an outbreak of Salmonella enterica serovar Enteritidis infection in a restaurant in Jiangxi Province, China, was investigated. Cases were interviewed. Stool samples from cases, anal swabs from restaurant employees, suspicious raw food materials, and semifinished food were collected and examined. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed to determine the relatedness of the pathogen isolates. Antimicrobial resistance genes and virulence genes of isolates were analyzed by WGS. The antimicrobial profile of the isolates was detected by broth microdilution, which involved 20 different antibiotics. Among the 31 patrons, 26 showed gastrointestinal symptoms. Five Salmonella Enteritidis strains were isolated from patients (2), semifinished food (2), and food handler (1). The results of PFGE and single-nucleotide polymorphism showed that these five isolates were identical clones. These findings demonstrated that this outbreak was a restaurant Salmonella Enteritidis outbreak associated with an infected food handler. The rates of resistance to nalidixic acid and colistin and intermediate resistance to ciprofloxacin were 100%, 80%, and 100%, respectively. These outbreak isolates harbored point mutation gyrA p.D87G. The cause of inconsistency between the genotype and phenotype of resistance was deeply discussed. A total of 107 virulence genes were found in each isolate, with many being associated with Salmonella pathogenicity island (SPI)-1 and SPI-2. As an overlooked contamination source, infected food handlers can easily cause large-scale outbreaks. This outbreak highlighted that the government should enhance the training and supervision of food hygiene and safety for food handlers to prevent foodborne outbreaks.


Asunto(s)
Brotes de Enfermedades , Restaurantes , Intoxicación Alimentaria por Salmonella , Salmonella enteritidis , Secuenciación Completa del Genoma , Humanos , Salmonella enteritidis/genética , Salmonella enteritidis/aislamiento & purificación , Salmonella enteritidis/efectos de los fármacos , China/epidemiología , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/microbiología , Antibacterianos/farmacología , Manipulación de Alimentos , Masculino , Femenino , Microbiología de Alimentos , Adulto , Electroforesis en Gel de Campo Pulsado , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Heces/microbiología , Genoma Bacteriano
4.
Small ; : e2307764, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372021

RESUMEN

Gold nanoparticles (AuNPs), universally regarded as colorimetric signal reporters, are widely employed in lateral flow immunoassays (LFIAs). However, it is difficult for AuNPs-LFIA to achieve a wide range and sensitive detection. Herein, novel coral-like hollow gold nanospheres (CHGNPs) are synthesized. The growth of gold nanospheres can be regulated to obtain a multibranched and hollow construction. The obtained CHGNPs possess intense broadband absorption across the visible to near-infrared region, exhibiting a high molar extinction coefficient of 14.65 × 1011 M-1 cm-1 and a photothermal conversion efficiency of 79.75%. Thus, the photothermal/colorimetric dual-readout LFIA is developed based on CHGNPs (CHGNPs-PT-LFIA and CHGNPs-CM-LFIA) to effectively improve the detection sensitivity and broaden the detection range in regard to sulfonamides (SAs). The limits of detection of the CHGNPs-PT-LFIA and CHGNPs-CM-LFIA reached 1.9 and 2.8 pg mL-1 for the quantitative detection of sulfaquinoxaline, respectively, which are 6.3-fold and 4.3-fold lower than that of the AuNPs-LFIA. Meanwhile, the CHGNPs-PT-LFIA broadened the detection range to three orders of magnitude, which ranged from 2.5 to 5000 pg mL-1 . The synthesized photothermal CHGNPs have been proven effective in improving the performance of the LFIA and provide a potential option for the construction of sensing platforms.

5.
Hortic Res ; 11(1): uhad238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222823

RESUMEN

As two of the most abundant post-translational modifications, phosphorylation and ubiquitination play a significant role in modulating plant-pathogen interactions and increasing evidence indicates their crosstalk in plant immunity. Rose (Rosa sp.) is one of the most important ornamental plants and can be seriously infected by Botrytis cinerea. Here, integrated proteomics analysis was performed to detect global proteome, phosphorylation, and ubiquitination changes in rose upon B. cinerea infection and investigate the possible phosphorylation and ubiquitination crosstalk. A total of 6165 proteins, 11 774 phosphorylation and 10 582 ubiquitination sites, and 77 phosphorylation and 13 ubiquitination motifs were identified. Botrytis cinerea infection resulted in 169 up-regulated and 122 down-regulated proteins, 291 up-regulated and 404 down-regulated phosphorylation sites, and 250 up-regulated and 634 down-regulated ubiquitination sites. There were 12 up-regulated PR10 proteins and half of them also showed reduced ubiquitination. A lot of kinases probably involved in plant pattern-triggered immunity signaling were up-regulated phosphoproteins. Noticeably, numerous kinases and ubiquitination-related proteins also showed a significant change in ubiquitination and phosphorylation, respectively. A cross-comparison of phosphoproteome and ubiquitylome indicated that both of two post-translational modifications of 104 proteins were dynamically regulated, and many putative pattern-triggered immunity signaling components in the plant plasma membrane were co-regulated. Moreover, five selected proteins, including four PR10 proteins and a plasma membrane aquaporin, were proven to be involved in rose resistance to B. cinerea. Our study provides insights into the molecular mechanisms underlying rose resistance to B. cinerea and also increases the database of phosphorylation and ubiquitination sites in plants.

6.
ACS Nano ; 17(23): 23723-23731, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38009547

RESUMEN

Escherichia coli O157:H7 (E. coli O157:H7) has become one of the major threats to public health and food safety. However, the culture method as a gold standard for the detection of E. coli O157:H7 requires laborious operations and a long processing time. Herein, we developed a dual-readout aggregation-induced emission nanoparticle-based lateral flow immunoassay (LFIA) for sensitive detection of E. coli O157:H7 to achieve a qualitative and quantitative assay for satisfying the applications under varying scenarios. 2,3-Bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)fumaronitrile (BAPF), an aggregation-induced emission luminogen, was designed to achieve a strong molar extinction coefficient (3.0 × 104 M-1 cm-1) and high quantum yield (33.28%), which was further verified by a large rotation angle and low energy gap. Subsequently, BAPFs were integrated into a nanostructured system to form excellent water-soluble nanoparticles (BAPFNPs) for the detection of E. coli O157:H7 with colorimetric and fluorescent readout. The designed BAPFNPs-based LFIA (BAPFNPs-LFIA) exhibited nearly qualitative ability with gold nanoparticles-LFIA (AuNPs-LFIA) and a 9 times enhancement compared with quantum beads-LFIA (QBs-LFIA) in quantitative aspect. Especially, FL-BAPFNPs-LFIA could detect E. coli O157:H7 earlier than QBs-LFIA and AuNPs-LFIA when samples with low E. coli O157:H7 concentrations were cultured. Overall, the proposed strategy revealed that versatile BAPFNPs have great potential as reporters for dual-readout ability and enhancing detection sensitivity for rapid and accurate pathogenic bacteria assay.


Asunto(s)
Escherichia coli O157 , Nanopartículas del Metal , Oro , Inmunoensayo , Pruebas en el Punto de Atención , Microbiología de Alimentos
7.
Food Chem ; 428: 136789, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423110

RESUMEN

A simple and rapid colorimetric method for the detection of melamine in milk samples is described. Polythymidine oligonucleotide was adsorbed on to the surface of gold nanoparticles (AuNPs), protecting it from aggregation. In the presence of melamine, polythymidine oligonucleotide combined with melamine formed a double-strand DNA-like structure, allowing AuNPs aggregation. In the presence of positively charged SYBR Green I (SG I), AuNPs were further aggregated. In the presence of melamine and SG I, aggregation of AuNPs was synergistic. Thus, in this principle, melamine can be detected visually. Plasmon resonance peak changes enabled detection of melamine quantitatively using UV-vis spectroscopy. The limit of detection for this colorimetric method was 16 µg L-1 with a good linear range from 19.5 µg L-1 to 1.25 × 103 µg L-1, and detection took only 1 min. The method was successfully applied for detection of melamine in milk samples.


Asunto(s)
Nanopartículas del Metal , Animales , Nanopartículas del Metal/química , Oro/química , Leche/química , Triazinas/análisis , Colorimetría/métodos , Oligonucleótidos , Límite de Detección
8.
J Dairy Sci ; 106(9): 5930-5939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37474367

RESUMEN

Escherichia coli O157:H7 poses a threat to humans. Traditional ELISA is not a sensitive method for the detection of E. coli O157:H7. Here, an efficient method was designed for improving the load capacity of alkaline phosphatase (ALP) with streptavidin scaffolded DNA tetrad (SS-DNAt). With more ALP, more ascorbic acid 2-phosphate was catalyzed to ascorbic acid that was used to synthesize fluorescence poly adenine-thymine-templated copper nanoclusters. Based on SS-DNAt, fluorescence ELISA was successfully proposed for improving the sensitivity for detection of E. coli O157:H7 in milk samples. The method showed a linear range of 104 to 106 cfu/mL. The limit of detection of fluorescence ELISA was 3.75 × 103 cfu/mL and 6.16-fold better than that of traditional ELISA. The recovery of the fluorescence ELISA was 86.7 to 93.6% with the coefficient of variation of 5.6 to 10.5% in milk. This method could be used to detect hazardous material in food.


Asunto(s)
Escherichia coli O157 , Humanos , Animales , Estreptavidina , Ensayo de Inmunoadsorción Enzimática/veterinaria , Leche , ADN , Microbiología de Alimentos
9.
J Craniofac Surg ; 34(3): e293-e294, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36872495

RESUMEN

Introducing a novel surgical technique that uses 2 screws and 3 titanium plates to reduce and fix an extracapsular condylar fracture. This technique has been used on 18 sides of extracapsular condylar fracture over the last 3 years in the Department of Oral and Cranio-Maxillofacial Science of Shanghai Ninth People's Hospital without severe complications in clinical practice. Applying this technique, the dislocated condylar segment can be reduced accurately and fixed efficiently.


Asunto(s)
Fracturas Mandibulares , Procedimientos de Cirugía Plástica , Humanos , Fijación Interna de Fracturas/métodos , Fracturas Mandibulares/cirugía , Cóndilo Mandibular/cirugía , China , Placas Óseas
11.
Foods ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496694

RESUMEN

Salmonella is a type of common foodborne pathogen of global concern, seriously endangering human health. In molecular biological detection of Salmonella, the method of amplifying DNA often faces the problem of aerosol pollution. In this study, a microfluidic chip was developed to integrate loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system to detect Salmonella. The LAMP reaction solution was initially injected into the chamber to amplify at 65 °C for 20 min; the CRISPR/Cas12a reaction solution was subsequently injected to mix with the amplicons for fluorescent signal production at 43 °C for 30 min. Then, the results can be confirmed by naked eyes under 495 nm light or by a fluorescence immunochromatographic reader. The detection limit of this method for Salmonella DNA was 118 pg/µL. The sensitivity and specificity of this method was 100%. Furthermore, this method was used to detect Salmonella after enrichment for 4 h in salmon and chicken samples spiked with 30 CFU/25 g, and was verified to have a stable detection capability in real samples. The microfluidic chip integrated with the LAMP and CRISPR/Cas12a system not only provides a possibility of highly sensitive endpoint fluorescent visual detection of a foodborne pathogen, but also greatly eliminates the risk of aerosol contamination.

12.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430449

RESUMEN

Plant senescence is a complex process that is controlled by developmental regulation and genetic programs. A senescence-related gene CpSRG1, which belongs to the 2OG-Fe(II) dioxygenase superfamily, was characterized from wintersweet, and the phylogenetic relationship of CpSRG1 with homologs from other species was investigated. The expression analysis by qRT-PCR (quantitative real-time PCR) indicated that CpSRG1 is abundant in flower organs, especially in petals and stamens, and the highest expression of CpSRG1 was detected in stage 6 (withering period). The expression patterns of the CpSRG1 gene were further confirmed in CpSRG1pro::GUS (ß-glucuronidase) plants, and the activity of the CpSRG1 promoter was enhanced by exogenous Eth (ethylene), SA (salicylic acid), and GA3 (gibberellin). Heterologous overexpression of CpSRG1 in Arabidopsis promoted growth and flowering, and delayed senescence. Moreover, the survival rates were significantly higher and the root lengths were significantly longer in the transgenic lines than in the wild-type plants, both under low nitrogen stress and GA3 treatment. This indicated that the CpSRG1 gene may promote the synthesis of assimilates in plants through the GA pathway, thereby improving growth and flowering, and delaying senescence in transgenic Arabidopsis. Our study has laid a satisfactory foundation for further analysis of senescence-related genes in wintersweet and wood plants. It also enriched our knowledge of the 2OG-Fe(II) dioxygenase superfamily, which plays a variety of important roles in plants.


Asunto(s)
Arabidopsis , Calycanthaceae , Dioxigenasas , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Calycanthaceae/genética , Dioxigenasas/genética , Compuestos Ferrosos/metabolismo
13.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142797

RESUMEN

Strigolactones (SLs) are a class of important hormones in the regulation of plant branching. In the model plant Arabidopsis, AtMAX1 encodes a cytochrome P450 protein and is a crucial gene in the strigolactone synthesis pathway. Yet, the regulatory mechanism of MAX1 in the shoot branching of wintersweet (Chimonanthus praecox) remains unclear. Here we identified and isolated three MAX1 homologous genes, namely CpMAX1a, CpMAX1b, and CpMAX1c. Quantitative real-time PCR (qRT-PCR) revealed the expression of CpMAX1a in all tissues, being highest in leaves, whereas CpMAX1b was only expressed in stems, while CpMAX1c was expressed in both roots and stem tips. However, CpMAX1a's expression decreased significantly after decapitation; hence, we verified its gene function. CpMAX1a was located in Arabidopsis chloroplasts. Overexpressing CpMAX1a restored the phenotype of the branching mutant max1−3, and reduced the rosette branch number, but resulted in no significant phenotypic differences from the wild type. Additionally, expression of AtBRC1 was significantly upregulated in transgenic lines, indicating that the CpMAX1a gene has a function similar to the homologous gene of Arabidopsis. In conclusion, our study shows that CpMAX1a plays a conserved role in regulating the branch development of wintersweet. This work provides a molecular and theoretical basis for better understanding the branch development of wintersweet.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calycanthaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Lactonas/metabolismo , Brotes de la Planta/metabolismo
14.
Int J Mol Med ; 50(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36004464

RESUMEN

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the flow cytometric data shown in Fig. 4I were strikingly similar to data appearing in different form in another article by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused [International Journal of Molecular Medicine 46: 119­130, 2020; DOI: 10.3892/ijmm.2020.4581].

15.
16.
Drug Deliv Transl Res ; 12(11): 2875-2892, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35349106

RESUMEN

The purpose of the project is to establish a standardized operation method of the in vitro permeability model to maximize mucosal integrity and viability. The model drug lidocaine permeability, 20 kDa fluorescein isothiocyanate-dextran, H&E staining, and mucosal viability were used as evaluation indicators. Firstly, the buccal mucosae of rats, rabbits, dogs, porcine, and humans were analyzed by H&E staining and morphometric analysis to compare the differences. Then, we studied a series of operation methods of isolated mucosa. The buccal mucosae were found to retain their integrity in Kreb's bicarbonate ringer solution at 4 °C for 36 h. Under the long-term storage method with program cooling, freezing at -80 °C, thawing at 37 °C, and using cryoprotectants of 20% glycerol and 20% trehalose, mucosal integrity and biological viability can be maintained for 21 days. The heat separation method was used to prepare a permeability model with a mucosal thickness of 500 µm, which was considered to be the optimal operation. In summary, this study provided an experimental basis for the selection and operation of in vitro penetration models, standardized the research process of isolated mucosa, and improved the accuracy of permeability studies.


Asunto(s)
Dextranos , Mucosa Bucal , Animales , Bicarbonatos , Perros , Glicerol , Humanos , Lidocaína , Permeabilidad , Conejos , Ratas , Reproducibilidad de los Resultados , Solución de Ringer , Porcinos , Trehalosa
17.
J Dairy Sci ; 105(4): 2922-2930, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35086713

RESUMEN

Escherichia coli O157:H7 is a type of hazardous bacteria in the field of food safety. A sensitive and effective method is urgently needed to detect it, avoiding enormous harm for the human health. In this study, we synthesized stable Ag+-doped gold nanoclusters (Ag-AuNC) with a fluorescence intensity 4.8 times stronger than that of AuNC. It was further demonstrated that Ag0 existing in the AuNC core and a fraction of Ag+ anchored on the AuNC shell eliminated the surface defects and improved the luminescent properties of AuNC. A combination of I2 and I- was used to quench fluorescence-enhanced Ag-AuNC, which was first applied in ELISA for detecting E. coli O157:H7 to improve the sensitivity. In the presence of E. coli O157:H7, the biotinylated anti-E. coli O157:H7 mAb and streptavidin-alkaline phosphatase would be immobilized and catalyze l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate to produce ascorbic acid. After addition of KIO3, I2/I- were generated. The I2 could trigger oxidative etching of Ag-AuNC and I- could combine with Ag+ to decrease the Ag+ concentration of Ag-AuNC, which resulted in fluorescence quenching of Ag-AuNC. Under optimal conditions, the linear range of I2/I--mediated fluorescence quenching of Ag-AuNC-based immunoassay for detecting E. coli O157:H7 was 3.3 × 103 to 106 cfu/mL, with a detection limit of 9.2 × 102 cfu/mL, 10.7-fold lower than that of the traditional ELISA. The proposed immunoassay exhibits excellent sensitivity, specificity, recovery, and accuracy, which is useful for quantitative detection of E. coli O157:H7 in food safety.


Asunto(s)
Escherichia coli O157 , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Microbiología de Alimentos , Oro , Inmunoensayo/métodos , Inmunoensayo/veterinaria , Leche/microbiología
18.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613869

RESUMEN

Gray mold (Botrytis elliptica) causes a deleterious fungal disease that decreases the ornamental value and yield of lilies. Lilium oriental hybrid 'Sorbonne' is a variety that is resistant to gray mold. Understanding the mechanism of resistance against B. elliptica infection in 'Sorbonne' can provide a basis for the genetic improvement in lily plants. In this study, a PacBio Sequel II system was used to sequence the full-length transcriptome of Lilium 'Sorbonne' after inoculation with B. elliptica. A total of 46.64 Gb subreads and 19,102 isoforms with an average length of 1598 bp were obtained. A prediction analysis revealed 263 lncRNAs, and 805 transcription factors, 4478 simple sequence repeats, and 17,752 coding sequences were identified. Pathogenesis-related proteins (PR), which may play important roles in resistance against B. elliptica infection, were identified based on the full-length transcriptome data and previously obtained second-generation transcriptome data. Nine non-redundant potential LhSorPR proteins were identified and assigned to two groups that were composed of two LhSorPR4 and seven LhSorPR10 proteins based on their genetic relatedness. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that the patterns of expression of nine differentially expressed PR genes under B. elliptica stress were basically consistent with the results of transcriptome sequencing. The pattern of expression of LhSorPR4s and LhSorPR10s genes in different tissues was analyzed, and the expression of each gene varied. Furthermore, we verified the function of LhSorPR4-2 gene in Lilium. The expression of LhSorPR4-2 was induced by phytohormones such as methyl jasmonate, salicylic acid, and ethephon. Moreover, the promoter region of LhSorPR4-2 was characterized by several functional domains associated with phytohormones and stress response. The overexpression of LhSorPR4-2 gene in 'Sorbonne' increased the resistance of the lily plant to B. elliptica and correlated with high chitinase activity. This study provides a full-length transcript database and functionally analyzed the resistance of PR gene to B. elliptica in Lilium, thereby introducing the candidate gene LhSorPR4-2 to breed resistance in Lilium.


Asunto(s)
Lilium , Transcriptoma , Lilium/genética , Lilium/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36613984

RESUMEN

The NAC (NAM, ATAF, and CUC) gene family is one of the largest plant-specific transcription factor families. Its members have various biological functions that play important roles in regulating plant growth and development and in responding to biotic and abiotic stresses. However, their functions in woody plants are not fully understood. In this study, we isolated an NAC family member, the CpNAC1 promoter and gene, from wintersweet. CpNAC1 was localized to the nucleus and showed transcriptional activation activity. qRT-PCR analyses revealed that the gene was expressed in almost all tissues tested, with the highest levels found in mature leaves and flower buds. Moreover, its expression was induced by various abiotic stresses and ABA treatment. Its expression patterns were further confirmed in CpNAC1pro:GUS (ß-glucuronidase) plants. Among all the transgenic lines, CpNAC1pro-D2 showed high GUS histochemical staining and activity in different tissues of Arabidopsis. Furthermore, its GUS activity significantly increased in response to various abiotic stresses and ABA treatment. This may be related to the stress-related cis-elements, such as ABRE and MYB, which clustered in the CpNAC1pro-D2 segment, suggesting that CpNAC1pro-D2 is the core segment that responds to abiotic stresses and ABA. In addition, CpNAC1-overexpressed Arabidopsis plants had weaker osmosis tolerance than the wild-type plants, demonstrating that CpNAC1 may negatively regulate the drought stress response in transgenic Arabidopsis. Our results provide a foundation for further analyses of NAC family genes in wintersweet, and they broaden our knowledge of the roles that NAC family genes may play in woody plants.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías
20.
Food Chem ; 375: 131875, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959139

RESUMEN

A signal-enhanced LFIA based on tyramine (TYR)-induced AuNPs aggregation has been developed for the sensitive detection of danofloxacin (DAN). In the model, the hydroxyl radical produced by HRP catalyzing H2O2 can trigger the TYR-AuNPs to aggregate on the T or C line for enhancing the detection signal. The linear range of TYR-AuNPs LFIA was 0.25-5 ng mL-1 with the limit of detection (LOD) of 0.032 ng mL-1, and the LOD was 8-fold lower than that of the traditional AuNPs LFIA (0.26 ng mL-1). The TYR-AuNPs LFIA could be used with the naked eyes to qualitatively detect DAN with a cut-off limit of 2.5 ng mL-1, which was 4-fold lower than that of the traditional AuNPs LFIA (10 ng mL-1). The recoveries of TYR-AuNPs LFIA were 86.04-105.14% and 92.41-110.19%, with the coefficient of variation of 1.71-2.05% and 4.42-5.89% in chicken and pork, respectively.


Asunto(s)
Oro , Nanopartículas del Metal , Fluoroquinolonas , Peróxido de Hidrógeno , Inmunoensayo , Límite de Detección , Tiramina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...